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Abstract

Systematic reviews address precise clinical questions via comprehensive synthesis of all
relevant published evidence. These reviews underpin Evidence Based Medicine (EBM)
by summarizing the entirety of the current literature pertaining to particular conditions
and treatments. Systematic reviews typically define a Population/Problem, Intervention,
Comparator, and Outcome (i.e., a PICO criteria) of interest, and researchers must then
retrieve, appraise and synthesize results from all clinical trial reports that meet these
criteria. Identifying PICO elements in the full texts of clinical trial reports is thus a critical
yet time-consuming step in the systematic review process. We seek to expedite evidence
synthesis by developing machine learning models to automatically extract sentences from
full-text articles relevant to PICO elements. Collecting a large corpus of training data
for this task would be prohibitively expensive. Therefore, we derive distant supervision
with which to train models using previously conducted reviews. Distant supervision entails
heuristically deriving ‘soft’ labels from an available structured resource (such as a database).
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However, we have access only to unstructured, free-text summaries of the PICO elements for
corresponding articles; the challenge is then to derive from these the desired sentence-level
annotations. To this end, we propose a new approach that we call Supervised Distant
Supervision (SDS) that uses a small amount of directly labeled data to better exploit a
large corpus of distantly labeled instances by learning to map from entries in the available
structured resource to target annotations on corresponding unlabeled instances. In both
retrospective and prospective evaluations, we show that this improves performance over
baseline supervised and distantly supervised methods for automated PICO extraction.

Keywords: Evidence-based medicine, distant supervision, data extraction, text mining

1. Introduction and Motivation

Evidence-based medicine (EBM) looks to inform patient care using the totality of the
available evidence. Typically, this evidence comprises the results of Randomized Control
Trials (RCTs) that investigate the efficacy of a particular treatment (or treatments) in people
with a specific clinical problem. Systematic reviews are transparently undertaken, rigorous
statistical syntheses of such evidence; these underpin EBM by providing quantitative
summaries of the entirety of the current evidence base pertaining to particular conditions,
treatments and populations.

Systematic reviews are especially critical in light of the data deluge in biomedicine:
over 27,000 clinical trials were published in 2012 alone, or roughly 74 per day on average
(Bastian et al., 2010). There is thus simply no way that a physician could keep current
with the body of primary evidence. Systematic reviews mitigate this problem by providing
up-to-date, comprehensive summaries of all evidence addressing focused clinical questions.
These reviews are considered the highest level of evidence and now inform all levels of
healthcare, from bedside treatment decisions to national policies and guidelines.

However, the same deluge of clinical evidence that has made reviews indispensable has
made producing and maintaining them increasingly onerous. An estimate from 1999 suggests
that producing a single review requires thousands of person hours (Allen and Olkin, 1999);
this has surely increased since. Producing and keeping evidence syntheses current is thus
hugely expensive, especially because reviews are performed by highly-trained individuals
(often doctors). Machine learning methods to automate aspects of the systematic review
process are therefore needed if EBM is to keep pace with the torrent of newly published
evidence (Tsafnat et al., 2013; Bastian et al., 2010; Elliott et al., 2014; Wallace et al., 2013).

A cornerstone of the systematic review paradigm is the notion of precise clinical
questions. These are typically formed by decomposing queries into PICO frames that define
the Population, Intervention, Comparison, and Outcome of interest. Interventions and
comparison treatments (e.g., placebo) are often discussed together: we therefore group I
and C for the remainder of this paper, and refer to these jointly as simply interventions.
Once specified, these criteria form the basis for retrieval and inclusion of published evidence
in a systematic review. The PICO framework is an invaluable tool in the EBM arsenal
generally (Huang et al., 2006), and is specifically a pillar of the systematic review process.

2



Unfortunately, results from RCTs are predominantly disseminated as unstructured free
text in scientific publications. This makes identifying relevant studies and extracting the
target data for evidence syntheses burdensome. For example, free text does not lend itself
to structured search over PICO elements. Structured PICO summaries of articles describing
clinical trials would vastly improve access to the biomedical literature base. Additionally,
methods to extract PICO elements for subsequent inspection could facilitate inclusion
assessments for systematic reviews by allowing reviewers to rapidly judge relevance with
respect to each PICO element. Search and study identification are obvious use cases for
a PICO-annotation system, but such a system would support many EBM tasks beyond
search. For example, automated PICO identification could expedite data extraction for
systematic reviews, in which reviewers manually extract structured data to be reported and
synthesized. Consider the task of extracting dosage information for a given clinical trial:
currently reviewers must identify passages in the article that discuss the interventions and
then extract from these the sought after information. This is time-consuming and tedious;
a tool that automatically identified PICO related sentences and guided the reviewer to
these would expedite data extraction.

In this work we present a novel, distantly supervised machine learning method that
aims to automatically extract sentences pertaining to PICO elements from full-text articles
describing RCT results. We exploit an existing (semi-)structured resource – the Cochrane
Database of Systematic Reviews (CDSR) – to derive distant supervision (DS) with which
to train our PICO extraction model. DS is generated by using heuristics to map from
existing structured data D to labels that approximate the target labels Y. However, for
this task, the structured data to which we have access comprises free-text summaries
describing each PICO element; this text does not appear verbatim in the corresponding
articles. Thus, we cannot rely on straight-forward methods such as string matching to
induce supervision. We therefore propose a novel method that learns to map from D to
Y using a small amount of direct supervision, thus deriving from the free-text summaries
in the CDSR the desired sentence-level annotations. We refer to this as supervised distant
supervision (SDS). We demonstrate empirically that this method consistently improves
automated PICO identification performance over strong baselines, both retrospectively
(using previously collected data) and via a prospective evaluation. While our focus here
is on the particular task of PICO identification in biomedical texts, we believe that the
proposed SDS method represents a generally useful paradigm for distantly supervised
machine learning.

The remainder of this paper is structured as follows. We review related work in the
following section. We introduce our source of distant supervision, the CDSR, in Section
3. This motivates the development of our SDS model, which we present in Section 4. We
discuss experimental details (including features and baseline methods to which we compare)
in Section 5, and report experimental results in Section 6. Finally, we conclude with
additional discussion in Section 7.
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2. Related Work

We briefly review two disparate threads of related work: automatic identification of PICO
elements for EBM (Section 2.1) and work on distant supervision (Section 2.2), paying
particular attention to recent efforts on models that combine distant and direct supervision.

2.1 Automatic PICO Identification

The practical need for language technologies posed by EBM-related tasks has motivated
several recent efforts to identify PICO elements in biomedical text (Demner-Fushman and
Lin, 2007; Chung, 2009; Boudin et al., 2010b,a; Kim et al., 2011). However, nearly all of
these works considered only the abstracts of articles, limiting their utility. Such approaches
could not be used, for example, to support data extraction for systematic reviews, because
clinically salient data is often not available in the abstract. Furthermore, we believe that
identifying PICO elements in the full-texts of articles could support rich information retrieval
functionality that enables deeper search, beyond what is possible from abstracts alone.

Nonetheless, identifying PICO sentences in abstracts has proven quite useful for sup-
porting biomedical literature retrieval. For example, Demner-Fushman and Lin (2007)
developed and evaluated a tool that extracts clinically salient snippets (including PICO
elements) from MEDLINE abstracts. They showed that these extractions can assist with
information retrieval and clinical question answering. Similarly, Boudin et al. (2010b,a)
showed that automatically generated PICO annotation of abstracts can improve biomedical
information retrieval, even if these annotations are noisy.

Moving beyond abstracts, one system that does operate over full texts to summarize
clinical trials is ExaCT (Kiritchenko et al., 2010). ExaCT aims to extract variables describing
clinical trials. It requires HTML or XML formatted documents as input. The system splits
full-text articles into sentences and classifies these as relevant or not using a model trained
on a small set (132) of manually annotated articles. ExaCT does not attempt to identify
PICO sentences, but rather aims to map directly to a semi-structured template describing
trial attributes. The work is therefore not directly comparable to the present effort.

Our work here differs from the efforts just reviewed in a few key ways:

1. In contrast to previous work, we aim to identify sentences in full-text articles that are
pertinent to PICO elements. This may be used to facilitate search, but we are more
immediately interested in using this technology to semi-automate data extraction for
systematic reviews.

2. Previous work has leveraged small corpora (on the order of tens to hundreds of
manually annotated abstracts) to train machine learning systems. By contrast, we
exploit a large ‘distantly supervised’ training corpus derived from an existing database.
In Section 6 we demonstrate the advantage of this novel approach, and show that
using a small set of direct supervision alone fares comparatively poorly here.
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Additionally, we introduce a novel paradigm for distantly supervised machine learning,
which we review next.

2.2 Distant Supervision

Distant supervision (DS) refers to learning from indirect or weak supervision derived from
existing resources. These derived ‘labels’ are often noisy, i.e., imperfect. The advantage
is that by exploiting existing resources one can capitalize on a potentially large labeled
training dataset ‘for free’. The general approach in DS is to develop heuristics that map
existing, structured resources onto the target labels of interest and then use these derived
labels to train a model (Figure 1a).

This paradigm was first introduced by Craven and Kumlien (1999) in their work on
building models for information extraction for biological knowledge base construction.1

Specifically they considered the task of extracting relationships between biological entities,
such as subcellular-structures and proteins. To generate (noisy) training data for this task
they exploited existing resources, including the Yeast Protein Database (YPD), which
contains propositions expressing relationships of interest between pairs of biological entities.
For each known relationship expressed in the YPD they searched PubMed, a repository of
biomedical literature, to identify abstracts that mentioned both entities. They made the
simplifying assumption that any such co-occurrence expressed the target relationship (this
being the heuristic means of inducing positive instances). They demonstrated that training
their model with these pseudo-positive instances resulted in performance comparable to
models trained using manually labeled examples.

Much of the more recent work on distant supervision since has been focused on the
tasks of relation extraction (Mintz et al., 2009; Nguyen and Moschitti, 2011; Riedel et al.,
2010; Bunescu and Mooney, 2007) and classification of Twitter/microblog texts (Purver
and Battersby, 2012; Marchetti-Bowick and Chambers, 2012). Our focus here aligns with
previous attempts to reduce the noise present in distantly labeled datasets, although so far
as we are aware these have been exclusively applied for the task of relation extraction (Roth
et al., 2013). These methods have tended to exploit a class of generative latent-variable
models specifically developed for the task of relation extraction (Surdeanu et al., 2012; Min
et al., 2013; Takamatsu et al., 2012).

Here we will be interested in guiding DS for general learning tasks using a small corpus
of direct annotations. Most similar to our work is therefore that of Nguyen and Moschitti
(2011), in which they proposed a combined direct and distant learning method (their work
was also in the context of relation extraction, but the method is general). Their approach
involves training two conditional probabilistic models: one trained on directly labeled
instances and the other on a mixed set comprising both directly and distantly labeled
examples. They then linearly combine probability estimates from these classifiers to produce

1. Craven and Kumlien called this ‘weakly supervised’ learning. The term ‘distant supervision’ was later
coined by Mintz et al. (2009).
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Target description from the CDSR Patients (n = 24, 15 females) with neck pain of > 3 months’
duration, who had pain in one or more cervical (C3-C7) zygapophysial joints after a car accident and whose
pain perception had been confirmed by placebo-controlled diagnostic blocks.

C1: The study patients were selected from among patients whose cervical zygapophyseal-joint pain had
been confirmed with the use of local anesthetic blocks at either the unit or a private radiology practice in
Newcastle.
C2: We studied 24 patients (9 men and 15 women; mean age, 43 years) who had pain in one or more
cervical zygapophyseal joints after an automobile accident (median duration of pain, 34 months).
C3: The significant rate of response to the control treatment, even among patients who had been tested
with placebo-controlled diagnostic blocks to confirm their perceptions of pain, is a sobering reminder of the
complex and inconstant dynamics of placebo phenomena.

Table 1: Example population target text (summary) from the CDSR and three candidate
sentences from the corresponding full-text article generated via distant supervision.

a final estimate. The key point here is that the derivation of the DS – i.e., the process of
moving from extant data to noisy, distant labels – was still a heuristic procedure in this
work. By contrast, we propose learning an explicit mapping from directly labeled data to
distant labels, as we discuss further in Section 4.

3. Learning from the Cochrane Database of Systematic Reviews

We next describe the Cochrane Database of Systematic Reviews (CDSR) (The Cochrane
Collaboration, 2014), which is the database we used to derive DS using the process outlined
in Section 3.2.

3.1 PICO and the CDSR

The CDSR is produced and maintained by the Cochrane Collaboration, a global network
of 30,000+ researchers who work together to produce systematic reviews. The group has
collectively generated nearly 6,000 reviews, which describe upwards of 50,000 clinical trials.
These reviews (and the data extracted to produce them) are published as the CDSR.

The CDSR contains structured and semi-structured data for every clinical trial included
in each systematic review. To date we have obtained corresponding full-text articles (PDFs)
for 12,808 of the clinical trials included in the CDSR. In previous work (Marshall et al.,
2014, 2015) we demonstrated that supervision derived from the CDSR on linked full-text
articles can be exploited to learn models for automated risk of bias (RoB) assessment of
clinical trials and supporting sentence extraction. However, in the case of RoB, supervision
was comparatively easy to derive from the CDSR: this required only literal string matching,
because by convention reviewers often store verbatim sentences extracted from articles
that support their RoB assessments. In the case of PICO, however, reviewers generate
free-text summaries for each element (not verbatim quotes) that are then stored in the
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PICO element Number of distantly labeled articles

Population 12,474
Intervention 12,378

Outcomes 12,572

Table 2: The number of full-text articles for which a corresponding free-text summary is
available in the CDSR for each PICO element (studies overlap substantially); this provides
our DS.

CDSR. Therefore, we must map from these summaries to sentence labels (relevant or not)
for each PICO domain.

Table 1 provides an example of a population summary stored in the Cochrane database for
a specific study, along with potentially ‘positive’ sentence instances from the corresponding
article. Such summaries are typically, but not always, generated for articles and this varies
somewhat by PICO element. In Table 2 we report the number of studies for which we have
access to human-generated summaries for each PICO element.

Articles used for the population, intervention and outcomes domains were (automatically)
segmented into 333, 335 and 338 sentences on average, respectively. We adopted a straight-
forward heuristic approach to generating DS (in turn generating candidate sets) of sentences
using the CDSR. Specifically, for a given article ai and matched PICO element summary si
stored in the CDSR, we soft-labeled as positive (designated as candidates) up to k sentences
in ai that were most similar to si. To mitigate noise, we introduced a threshold such
that candidate sentences had to be at least ‘reasonably’ similar to the CDSR text to be
included in the candidate set. Operationally, we ranked all sentences in a given article
with respect to the raw number of word (unigram) tokens shared with the CDSR summary,
excluding stop words. The top 10 sentences that shared at least 4 tokens with the summary
were considered positive (members of the candidate set). These were somewhat arbitrary
decisions reflecting intuitions gleaned through working with the data; other approaches to
generating candidate sets could have of course been used here instead. However, it is likely
that any reasonable heuristic based on token similarity would result in DS with similar
properties.

3.2 Annotation

We labeled a subset of the candidate sets generated via DS from the CDSR for two
reasons: (1) this constitutes the direct supervision which we aim to combine with DS to
train an accurate model; and, (2) cross-fold validation using these labels may be used
as a proxy evaluation for different models. We say ‘proxy’ because implicitly we assume
that all sentences not among the candidate set are true negatives, which is likely not the
case (although given the relatively low threshold for inclusion in the candidate set, this
assumption is not entirely unreasonable).
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The annotation process involved rating the quality of automatically derived candidate
sentences for each PICO element and article. Annotations were on a 3-point scale designed
to differentiate between irrelevant, relevant and best available candidate sentences (coded as
0, 1 and 2, respectively). This assessment was made in light of the corresponding summaries
for each PICO field published in the CDSR. In Table 1, we show three candidate sentences
(distantly labeled ‘positive’ instances) and the target summary. Here, candidate 1 (C1) is
relevant, C2 is the best available and C3 is in fact irrelevant.

Two of the co-authors (BZ and AS) worked with BW to develop and refine the labeling
scheme. This refinement process involved conducting a few pilot rounds to clarify labeling
criteria.2 We conducted these until what we deemed acceptable pairwise agreement was
reached, and subsequently discarded the annotations collected in these early rounds. After
this pilot phase, a subset of 1,071 total candidate sentences were labeled independently
by both annotators. Additional sentences were later labeled individually. On the multiply
labeled subset, observed annotator agreement was high with respect: pairwise κ = 0.74
overall, and κ = 0.81 when we group relevant sentences with best available – in practice, we
found distinguishing between these was difficult and so we focus on discriminating between
irrelevant and relevant/best available sentences. Ultimately, we acquired a set of 2,309
labels on sentences from 108 unique articles; these comprise 832, 822 and 655 sentences
corresponding to ‘participants’, ‘interventions’ and ‘outcomes’, respectively.

4. Supervised Distant Supervision

We now describe the novel approach of supervised distant supervision (SDS) that we propose
for capitalizing on a small set of directly labeled candidate instances in conjunction with a
large set of distantly supervised examples to induce a more accurate model for the target
task. Figure 1b describes the idea at a high-level. The intuition is to train a model that
maps from the heuristically derived and hence noisy DS to ‘true’ target labels. This may
be viewed as learning a filtering model that winnows a candidate set of positive instances
automatically generated via DS to a higher-precision subset of (hopefully) true positive
instances, using attributes derived from instances and the available distant supervision on
them.

We will denote instances (documents) by X = {x1, ...,xn}. Each xi ∈ X comprises
mi sentences: {xi,1, ...,xi,mi}. We will index sentences by j, so xi,j denotes the (vector
representation of) sentence j in document i. We treat the sentence extraction tasks for
the respective PICO elements as independent, and therefore do not introduce notation to
differentiate between them.

We will denote the database of semi-structured information from which we are to
derive DS by D. We assume that D contains an entry for all n linked articles un-
der consideration. We denote the set of distantly derived labels on sentences by Ỹ =

2. The annotation guideline developed during our pilot annotation phase is available at: http://byron.

ischool.utexas.edu/static/sds-guidelines.pdf
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h(x)structured data

unstructured data

distantly labeled data
rules/heuristics 

(a) The standard approach to distant supervision. Generally one has access to (i) a (large) set of
unlabeled instances and, (ii) some sort of structured corpus to be used to derive distant labels on
said instances. This derivation is typically ad hoc and involves heuristics; the derived labels are thus
usually noisy.

structured data

lots of unstructured data

distantly labeled data
learned mapping

f(x)

small amount of manually 
labeled unstructured data

(b) The proposed supervised distant supervision (SDS) approach. We aim to leverage a small amount
of annotated data – which provides alignments between unlabeled instances with the structured
corpus to be used to derive distant labels – to induce a model that maps that from paired entries in
the available structured data and unlabeled corpus to the target labels on the latter.

Figure 1: Standard distant supervision (top) and the proposed supervised distant supervision
approach (bottom).
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{ỹ1,1, ..., ỹ1,m1 , ..., ỹn,1, ..., ỹn,mn}, and corresponding true target labels by Y = {y1,1, ...,
y1,m1 , ..., yn,1, ..., yn,mn}. The former are assumed to have been derived from D via the
heuristic labeling function h, while the latter are assumed to be unobserved. In DS one
generally hopes that Ỹ and Y agree well enough to train a model that can predict target
labels for future examples.

Our innovation here is to exploit a small amount of direct supervision to learn a model
to improve DS by filtering the candidates generated by h using a function f that operates
over features capturing similarities between entries in D and instances to generate a more
precise label set. Specifically we aim to learn a function f : (X̃ , Ỹ) → Y, where we have
introduced new instance representations X̃ which incorporate features derived from pairs
of instances and database entries (we later enumerate these). We emphasize that this
representation differs from X , which cannot exploit features that rely on D because DS
will not generally be available for new instances. The parameters of f are to be estimated
using a small amount of direct (manual) supervision which we will denote by L. These
labels indicate whether or not distantly derived labels are correct. Put another way, this is
supervision for distant supervision.

We will assume that the heuristic function h can generate a candidate set of positive
instances, many of which will in fact be negative. This assumption is consistent with
previous efforts (Bunescu and Mooney, 2007). In our case, we will have a candidate set
of sentence indices Ci associated with each entry (study) i in D (note that we will have
different candidate sets for each PICO element, but the modeling approach will be the same
for each). These are the sentences for which ỹ is positive. The supervision L will comprise
annotations on entries in these candidate sets with respect to target labels y. Thus the
learning task that we will be interested in is a mapping between C1, ..., Cl and corresponding
target label sets Y1, ...,Yl.

To better motivate this SDS approach, consider a scenario in which one has access to
a (very) large set of unlabeled instances X and a database D from which noisy, distant
supervision Ỹ may be derived (along with feature vectors jointly describing instances and
their entries in D, X̃ ). In such scenarios, we will be able to efficiently generate a very large
training set for ‘free’ by exploiting D; hence the appeal of DS. However, if our rule h for
deriving Ỹ is only moderately accurate, we may be introducing excessive noise into the
training set, in turn hindering model performance. At the same time, it may be that one
can dramatically improve the pseudo-labeling accuracy by learning a mapping from a small
amount of direct supervision, L. Providing supervision for the mapping, rather than the
actual task at hand, may be worthwhile if the former allows us to effectively exploit the
large set of distantly labeled data.

One may of course use any learning model for f . Here we use a log-linear model to
relate instances comprising candidate sets to their associated label qualities. Specifically,
we assume:
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p̂sdsi,j
def
= p(yi,j |Ci, w̃) =

{
∝ exp(w̃ · x̃i,j) if j ∈ Ci (i.e., ỹi,j = 1)

0 otherwise
(1)

where w̃ is a weight vector to be estimated from the training data L. More precisely, we use
regularized logistic regression as our conditional probability model for instances comprising
the candidate set. Note that for brevity we will denote the estimated conditional probability
for sentence j in document i by p̂sdsi,j . The idea is that once we have estimated w̃ (and hence

p̂sdsi,j for all i and j) we can use this to improve the quality of DS by effectively filtering the
candidate sets.

Consider first a standard objective that aims to directly estimate the parameters w of a
linear model for the target task relying only on the distant supervision:

argmin
w

R(w) + C
n∑

i=1

mi∑
j=1

loss(w · xi,j , ỹi,j) (2)

where a loss function (e.g., hinge or log loss) is used to incur a penalty for disagreement
between model predictions and the derived (distant) labels, R is a regularization penalty
(such as the squared `2 norm) and C is a scalar encoding the emphasis placed on mini-
mizing loss versus achieving model simplicity. We will be concerned primarily with the
parameterization of the loss function here, and therefore elide the regularization term (and
associated hyper-parameter C) for brevity in the following equations.

Again grouping all distantly labeled ‘positive’ sentences for document i in the set Ci
and decomposing the loss into that incurred for false negatives and false positives, we can
re-write this as:

n∑
i=1

∑
j∈Ci

{cfn · loss(w · xi,j , 1) +
∑
j 6∈Ci

cfp · loss(w · xi,j ,−1)} (3)

Where we are denoting the cost of a false negative by cfn and the cost of a false positive by
cfp. Minimizing this objective over w provides a baseline approach to learning under DS.

We propose an alternative objective that leverages the mapping model discussed above
(Equation 1). The most straight-forward approach would be to use binary (0/1) classifier
output to completely drop out instances in the candidate set that are deemed likely to be
irrelevant by the model, i.e.:

n∑
i=1

{
∑
j∈Ci

cfn · sign0/1(w̃ · x̃i,j) · loss(w · xi,j , 1) +
∑
j 6∈Ci

cfp · loss(w · xi,j ,−1)} (4)

Where sign0/1 denotes a sign function that returns 0 when its argument is negative and 1
otherwise. We take a finer-grained approach in which we scale the contribution to the total
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loss due to ‘positive’ instances by probability estimates that these indeed represent true
positive examples, conditioned on the available distant supervision:

n∑
i=1

{
∑
j∈Ci

cfn · p̂sdsi,j · loss(w · xi,j , 1) +
∑
j 6∈Ci

cfp · loss(w · xi,j ,−1)} (5)

We extend this objective to penalize more for mistakes on explicitly labeled instances.
Recall that we denote by L the small set of directly annotated articles; here we assume
that this set comprises indices of directly labeled articles. Let us also denote by L+i and L−i
the set of positive and negative sentence indices for labeled article i, respectively. Further,
denote by L̃ the set of article indices for which we only have distant supervision (so that
L ∩ L̃ = ∅ by construction). Putting everything together forms our complete objective:

argmin
w

R(w) + C(λ
∑
i∈L
{
∑
j∈L+i

cfn · loss(w · xi,j , 1) +
∑
j∈L−i

cfp · loss(w · xi,j ,−1)}+

∑
i∈L̃

{
∑
j∈Ci

cfn · p̂sdsi,j · loss(w · xi,j , 1) +
∑
j 6∈Ci

cfp · loss(w · xi,j ,−1)}) (6)

Here we used log loss throughout and `2 regularization for the penalty R. The λ and C are
hyper-parameters to be tuned via grid-search (details in Section 5.3).

The key element of this objective is the use of the p̂sdsi,j (Equation 1) estimates to scale
loss contributions from distantly supervised data. This is particularly important because
in general there will exist far more distantly supervised instances than directly labeled
examples, i.e., |L̃| >> |L|. One practical advantage of this approach is that once training
is complete, the model is defined by a single weight-vector w, even though two models,
parameterized independently by w and w̃ are used during training.

Recall that p̂sdsi,j estimates the probability of a candidate sentence (potentially positive
instance, as per the distant supervision heuristic h) indeed being a ‘true’ positive. As
mentioned above, the feature space that we use for this task can differ from the feature
space used for the target task. That is, the attributes comprising X̃ need not be the same
as those in X . Indeed, features in X̃ should capture signal gleaned from attributes derived
via the available distant supervision D for any given instance, but at test time we would
not be able to capitalize on such features. In the next section we describe the features we
used for PICO sentence classification, both for X and X̃ .
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Feature Description

Bag-of-Words Term-Frequency Inverse-Document-Frequency (TF-IDF) weighted uni-
and bi-gram count features extracted for each sentence. We include up
to 50,000 unique tokens that appear in at least three unique sentences.

Positional Indicator variable coding for the decile (with respect to length) of the
article where the corresponding sentence is located.

Line lengths Variables indicating if a sentence contains 10%, 25% or a greater per-
centage of ‘short’ lines (operationally defined as comprising 10 or fewer
characters); a heuristic for identifying tabular data

Numbers Indicators encoding the fraction of numerical tokens in a sentence (fewer
than 20% or fewer than 40%).

New-line count Binned indicators for new-line counts in sentences. Bins were: 0-1, fewer
than 20 and fewer than 40 new-line characters.

Drugbank An indicator encoding whether the sentence contains any known drug
names (as enumerated in a stored list of drug names from http://www.

drugbank.ca/).

Additional features used for SDS task (encoded by X̃ )

Shared tokens TF-IDF weighted features capturing the uni- and bi-grams present both
in a sentence and in the Cochrane summary for the target field.

Relative similarity score ‘Score’ (here, token overlap count) for sentences with respect to target
summary in the CDSR. Specifically, we use the score for the sentence
minus the average score over all candidate sentences.

Table 3: Features we used for the target learning tasks and additional features we used in
learning to map from candidate sets (the distant supervision) to ‘true’ labels. We set discrete
(‘binned’) feature thresholds heuristically, reflecting intuition; we did not experiment at
length with alternative coding schemes. Note that separate models were learned for each
PICO domain.
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5. Experimental Details and Setup

5.1 Features

Table 3 enumerates the feature sets we use. All models leverage those in the top part of the
table. The bottom part describes those features that are derived using D, our source of DS.
Therefore, these are only used in the SDS approach, and only present in X̃ .

5.2 Baselines

We compare the proposed supervised distant supervision (SDS) approach to the following
baseline methods:

• Distant supervision only (DS) (Mintz et al., 2009; Craven and Kumlien, 1999). This
simply relies on the heuristic labeling function h. We define the corresponding
objective formally in Equation 3. We also experimented with a variant that naively
incorporates the direct labels when available, but does not explicitly distinguish these
from the distant labels. These two approaches performed equivalently, likely due to
the relative volume of the distantly labeled instances.

• Direct supervision only. This uses only the instances for which we have direct
supervision and so represents standard supervised learning.

• Joint distant and direct supervision, via the pooling method due to Nguyen and
Moschitti (2011). In this approach one leverages the direct and indirect supervision
to estimate separate (probabilistic) models, and then generates a final predicted
probability by linearly interpolating the estimates from the two models:

p̂pooledi,j = α · p̂directi,j + (1− α) · p̂distanti,j (7)

Where α is to be tuned on a validation set (Section 5.3).

These baselines allow us to evaluate (1) whether and to what degree augmenting a large
set of DS with a small set of direction annotations can improve model performance; (2) the
relative accuracy of the proposed SDS approach, in comparison to the pooling mechanism
proposed by Nguyen and Moschitti (2011).

5.3 Parameter Estimation and Hyper-Parameter Tuning

We performed parameter estimation for all models concerned with the target task (i.e.,
estimating w) via Stochastic Gradient Descent (SGD).3 For all models, class weights were
set inversely to their prevalences in the training dataset (mistakes on the rare class – positive

3. Specifically, we used the implementation in the Python machine learning library scikit-learn (Pedregosa
et al., 2011).
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instances – were thus more severely penalized). For distant and direct only models, we
conducted a line-search over C values from 10 up to 105, taking logarithmically spaced
steps. We selected from these the value that maximized the harmonic mean of precision
and recall (F1 score); this was repeated independently for each fold.

SDS. For the SDS model (Equation 6) we performed grid search over λ and C values.
Specifically we searched over λ = {2, 10, 50, 100, 200, 500} and the same set of C values
specified above. For each point on this grid, we assessed performance with respect to
squared error on a validation set comprising 25% of the available training data for a given
fold. We kept the λ and C values that minimized expected squared error

(p̂{yi,j = 1|ŵ,xi,j} − sign0/1(yi,j))
2 (8)

Where p̂{yi,j = 1|ŵ} denotes the predicted probability of sentence j in article i being
relevant – that is, predicted by the linear model for the target task where ŵ has been
selected to maximize the objective parameterized by a specific pair of (λ, C) values. We
emphasize that this estimated probability is with respect to the target label, and thus
differs from the p̂sdsi,j defined in Equation 1, which relies on an estimate of w̃. We scaled this
per-instance error to account for imbalance, so that the total contribution to the overall
error that could be incurred from mistakes made on (the relatively few) positive instances
was equal to the potential contribution due to mistakes made on negative examples.

We also note that the parameters of the SDS model (i.e., w̃ in Equation 1) were
estimated using LIBLINEAR (Fan et al., 2008); for this model we searched over a slightly
different range of C values, ranging from 100 to 104, taking logarithmically spaced steps.

Nguyen. We performed a line-search for α (Equation 7) ranging from 0 to 1 taking 50
equispaced steps using the same strategy and objective as just described for tuning the SDS
hyper-parameters. (Note that the two constituent models that form the Nguyen ensemble
have their own respective regularizer and associated scalar hyper-parameter; we tune these
independently of α, also via line-search as described above).

5.4 Evaluation and Metrics

We performed both retrospective and prospective evaluation. For retrospective evaluation,
we performed cross-fold validation of the directly labeled candidate instances (see Section
3). We also conducted a prospective evaluation, which removes noise from the test set but
required additional annotation effort. In this evaluation we included only the two most
competitive methods. The top-3 sentences retrieved by each of these methods were then
directly labeled for relevance, using the same criteria as we used in collecting our direct
supervision over candidate instances (Section 3.2). The annotator was blinded to which
method selected which sentences.

For performance metrics, we consider both per-article Area Under the Receiver Operating
Characteristic Curve (AUC) to assess overall discriminative performance and accuracy at
top-k, i.e., the fraction of articles for which at least one relevant sentence is ranked among
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the top k. To calculate the AUCs for a given method, we rank all sentences in each article
according to the scores assigned by the model regarding the likelihood of sentence relevance
and then calculate an AUC by sweeping a threshold along these; this quantifies how often
a given method ranks sentences explicitly labeled as relevant above other (presumably
irrelevant) sentences. We do this separately for each article, as in practice one is interested
in within-article, rather than absolute, sentence rankings.

The accuracy at top-k metric captures how automated PICO identification might be
used in practice: by rapidly guiding expert systematic reviewers to sentences in full-text
articles that (probably) contain the information of interest. This metric is also forgiving of
potential ‘false negatives’ in our retrospective label set that may exist due to noise in the
annotation process (recall we treat all non-candidates as irrelevant). For the prospective
evaluation, for which the dataset is smaller but more reliable, we additionally report the
raw proportion of relevant sentences selected by each method.

6. Results

We present results with respect to two types of evaluation: retrospective (Section 6.1) and
prospective (Section 6.2). For the former, we performed cross-fold validation using the
hybrid distant and direct set of labels described in Section 3.2. This has the desirable
property of providing a relatively large test corpus, but has the drawback of being somewhat
noisy. Therefore, we also performed a prospective evaluation in which we tasked one of our
trained annotators with labeling (for each PICO domain) top-ranked sentences selected
from 50 held-out articles by the two most competitive approaches, Nguyen and SDS. We
then compare the labels assigned to instances selected by the respective methods.

6.1 Retrospective evaluation

We performed five-fold validation on the 108 articles for which candidate sentences were
directly labeled across all three PICO elements (recall that we group Intervention and
Comparator together). We treat all explicitly labeled relevant and best available sentences
(as described in Section 3) instances as positive and all other examples as negative, including
those that did not score sufficiently high to be included in a candidate set (i.e., distantly
labeled negative instances).

We report results averaged over these folds with respect the metrics discussed in Section
5.4: per-article AUC, and accuracy at top-k (k = 3 and k = 10). We report all results
observed on the retrospective data in Table 4. The salient observation here is that the
proposed SDS model fares better than or as well as all baselines both with respect to
overall discriminative performance (i.e., AUCs) and top-k metrics. By contrast, DS alone
performs well with respect to AUCs, but is not competetive with respect to the practical
top-k metrics. Nguyen, meanwhile, performs in terms of top-k metrics, but poorly with
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Method Mean AUC Top-3 mean (CI) Top-10 mean (CI)

Population
Direct only 0.899 0.636 (0.542, 0.731) 0.848 (0.778, 0.919)

DS 0.941 0.626 (0.531, 0.722) 0.909 (0.852, 0.966)
Nguyen 0.917 0.697 (0.606, 0.787) 0.899 (0.840, 0.958)

SDS 0.945 0.717 (0.628, 0.806) 0.919 (0.866, 0.973)
Interventions

Direct only 0.892 0.691 (0.599, 0.783) 0.876 (0.811, 0.942)
DS 0.935 0.701 (0.610, 0.792) 0.887 (0.823, 0.950)

Nguyen 0.927 0.773 (0.690, 0.857) 0.897 (0.836, 0.957)
SDS 0.934 0.753 (0.667, 0.838) 0.928 (0.876, 0.979)

Outcomes
Direct only 0.837 0.363 (0.264, 0.461) 0.648 (0.550, 0.746)

DS 0.894 0.275 (0.183, 0.366) 0.736 (0.646, 0.827)
Nguyen 0.888 0.538 (0.436, 0.641) 0.769 (0.683, 0.856)

SDS 0.895 0.418 (0.316, 0.519) 0.758 (0.670, 0.846)

Table 4: Retrospective results, with respect to: mean per-article AUC and accuracy at
top-3 and top-10 sentences. Recall that the latter metric measures the proportion of articles
for which at least one relevant sentence ranks amongst the top k (here, 3 or 10).

respect to overall ranking ability as measured by the AUCs. Relying only on the small set
of direct supervision is generally not a competitive approach.

Figures 2a, 2b and 2c describe the distributions of AUCs realized by each strategy for
population, intervention and outcomes sentences, respectively. These are density plots
(smoothed histograms) showing the empirical density of AUCs (calculated per-article)
achieved by each strategy. We can see that SDS and DS fare the best here, with SDS
achieving slightly better results, on average. The Nguyen model falls behind both of these
methods but edges out the strategy of using only the available direct supervision.

It is interesting to juxtapose these AUC results with the accuracy at top-3 and top-10
metrics (reported in Table 4 and Figures 3 and 4, respectively). Recall that these capture
the proportion of articles for which at least one relevant or best available sentence appears in
the top-k highest ranking sentences. Thus, it rewards methods that push relevant sentences
to the top, and ignores overall ranking performance. Under this metric, SDS and Nguyen
would seem to perform the best. However, this evaluation is noisy, because it relies at least
partially on distantly supervised labels. In any case, it is interesting that SDS seems to
achieve strong performance with respect both to overall discriminative ability (ranking)
and top-k performance, in contrast to the Nguyen model, which fares relatively poorly with
respect to overall ranking.

17



0.5 0.6 0.7 0.8 0.9 1.0
AUC (per article)

d
e
n
si

ty

Direct only (mean AUC 0.899)

DS (mean AUC 0.941)

Nguyen (mean AUC 0.917)

SDS (mean AUC 0.945)

(a) Population

0.5 0.6 0.7 0.8 0.9 1.0
AUC (per article)

d
e
n
si

ty

Direct only (mean AUC 0.892)

DS (mean AUC 0.935)

Nguyen (mean AUC 0.927)

SDS (mean AUC 0.934)

(b) Interventions

0.5 0.6 0.7 0.8 0.9 1.0
AUC (per article)

d
e
n
si

ty

Direct only (mean AUC 0.837)

DS (mean AUC 0.894)

Nguyen (mean AUC 0.888)

SDS (mean AUC 0.895)

(c) Outcomes

Figure 2: Density plots of per-article AUCs (estimated via DS). While simple DS fares
nearly as well as SDS with respect to overall ranking ability (AUC), we note that it performs
poorly in terms of the top-k metrics, as can be seen in Figures 3 and 4.
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Figure 3: Proportion of articles for which at least one sentence rated ≥ 1 ranked among
the top k = 3. Shown are point estimates (circles) and associated 95% confidence intervals
(constructed via the normal approximation) for each strategy and for each PICO element.
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Figure 4: Proportion of articles for which at least one sentence rated ≥ 1 ranked among
the top k = 10 for each PICO element.
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6.2 Prospective results

Method Top-3 mean (CI) Raw proportion of relevant top-3 sentences (CI)

Population
Nguyen 0.960 (0.906, 1.000) 0.907 (0.860, 0.953)

SDS 0.960 (0.906, 1.000) 0.939 (0.901, 0.978)
Interventions

Nguyen 0.958 (0.902, 1.000) 0.854 (0.797, 0.912)
SDS 0.958 (0.902, 1.000) 0.903 (0.854, 0.951)

Outcomes
Nguyen 0.980 (0.941, 1.000) 0.880 (0.828, 0.932)

SDS 1.000 (1.000, 1.000) 0.887 (0.836, 0.937)

Table 5: Prospective results, as measured via a blinded evaluation of sentences selected by
the two models for each domain from held-out articles. The first column reports the top-3
metric reported above, while the second column reports the raw proportion of sentences
selected for held-out articles deemed relevant or best available by an annotator (who was
blinded to which model selected which sentences). Confidence intervals are again estimated
via the asymptotic normal approximation; we truncate the upper-bounds at 1.

We prospectively evaluated the top-3 sentences retrieved by the Nguyen and SDS
methods (as these were the best performing in our retrospective evaluation); these are
reported in the first column of Table 5. Both methods perform well, and seem nearly
equivalent according to this metric (which quantifies the fraction of studies for which at
least one of the three selected sentences was deemed relevant). To explore the results in
a more granular way (and because we can be confident that labels are not noisy here, as
they are in the retrospective evaluation), we also calculated the raw proportion of sentences
selected by each method that were deemed relevant or best available, i.e., ignoring study-level
groupings. These results are reported in the second column of Table 5, and they show that
SDS consistently includes more relevant sentences among the top-3 than does the pooling
approach, and this holds across all PICO elements.

7. Discussion

We have presented and evaluated a new approach to automating the extraction of sentences
describing the PICO elements from the full-texts of biomedical publications that report the
conduct and results of clinical trials. As far as we are aware, this is the first effort to build
models that automatically extract PICO sentences from full-texts.

We demonstrated the efficacy of using distant supervision (DS) for this task and we
introduced supervised distant supervision (SDS), a new approach to distant supervision
that capitalizes on a small set of direct annotation to mitigate noise in distantly derived
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annotations. We demonstrated that this consistently improves performance compared to
baseline models, including a previously proposed approach to combining direct and distant
supervision. While this work has been motivated by EBM and specifically the task of
PICO extraction, we believe that the proposed SDS approach represents a generally useful
strategy for learning jointly from distant and direct supervision.

A natural extension to SDS would be to explore active SDS, in which one would aim to
selectively acquire the small set of directly annotated instances with which to estimate the
parameters of the mapping function f . This may further economize efforts by capitalizing
on a small set of examples cleverly selected instances to learn a model that can subsequently
‘clean’ a very large set of distantly generated labels.

With respect to next steps toward automating EBM, we hope to develop models that
take as input the PICO sentences extracted from articles to improve ‘downstream’ tasks.
For example, we will incorporate these models into our RobotReviewer (Marshall et al.,
2015; Kuiper et al., 2014) tool, which aims to facilitate semi-automated data extraction
from full-text articles for biomedical evidence synthesis. This tool uses machine learning
models to automatically identify and highlight passages likely to contain the information of
interest, thus expediting the extraction process. Additionally, extracted PICO sentences
could be used to improve article indexing for search, or fed as input to models for extracting
structured bits of information, such as outcome metrics.

Realizing the aim of evidence-based care in an era of information overload necessitates
the development of new machine learning and natural language processing technologies to
optimize aspects of evidence synthesize. This work represents one step toward this goal,
but much work remains.
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